Cardiovascular disease

The focus on dairy foods and cardiovascular disease (CVD) is often in relation to saturated fat. There is an assumption that because some dairy foods contain saturated fatty acids and dairy in general contributes to saturated fat intake in the diet, that it also increases the risk of cardiovascular disease. Yet the majority of epidemiological studies have shown no adverse effects of regularly consuming milk and dairy foods such as yogurt and cheese on cardiovascular health, irrespective of fat content. In fact, in some cases a cardio-protective effect has been observed.

The explanation for this may lie in the complex composition of milk and dairy foods which, in addition to saturated fat, contain other nutrients and bioactive components such as calcium, potassium and bioactive peptides in the dairy matrix which may be beneficial to cardiovascular health. In addition, the overall fatty acid profile of milk and dairy may not have the detrimental effect on blood lipids or other cardiovascular parameters that has been assumed.

Observational studies

In the absence of long-term intervention trials, the best available data on the relationship between dairy foods and cardiovascular disease are from large. long-term observational studies. There are several studies of this type in European populations. For example, a prospective cohort study from the UK reports that men who drank the most milk (around a pint / 586ml of whole milk a day) had fewer heart attacks and fewer strokes than those who had little or no milk in their diets¹. The very large Netherlands Cohort Study, consisting of over 120,000 men and women, showed no association between total milk product consumption and stroke mortality, although butter and dairy fat was associated with a small (7%) increased risk of all-cause and heart disease mortality among women². Recent data from the smaller Dutch Hoorn Study also found that overall dairy intake was not associated with CVD mortality but the intake of high-fat dairy products was³. In contrast, the Rotterdam Study reports that in an older Dutch population, high-fat dairy was associated with a reduced risk of fatal stroke; total dairy consumption or the intake of specific dairy products was not related to CVD events⁴

In another Dutch prospective cohort, there was again no evidence that dairy products increased risk of heart disease or stroke⁵. In fact, high intakes of total and low-fat dairy were associated with a lower coronary heart disease (CHD) risk in participants without hypertension. Low-fat dairy consumption was also associated with reduced risk of stroke in cohorts of Swedish men and women⁶. In the same cohorts, a high intake of fermented milk (yogurt and cultured sour milk) was found to reduce CVD risk⁷. Fermented milk and cheese were also associated with reduced cardiovascular disease mortality⁸. There was, however, an increased CVD mortality risk reported in this study in those drinking three or more glasses of (nonfermented) milk a day compared with less than one glass. The reason for this discrepancy in the same cohort is not clear and the authors urge a cautious interpretation of the results. Moreover, when these data were re-examined, milk consumption was associated with a lower risk of CVD mortality⁹. In line with the majority of epidemiological studies, a recent Danish investigation reports no adverse effects of dairy on cardiovascular health¹⁰. The French MONICA project conducted over 14 years, found that dairy consumption (particularly milk intake) as part of a diverse, healthy diet was associated with the lowest mortality rate mostly due to reduced cardiovascular deaths¹¹.

Meta-analyses for milk

A number of analyses have pooled the data from individual prospective studies such as these and their results strengthen the evidence that regularly consuming milk and other dairy products does not increase risk of cardiovascular disease and may even have a protective effect^{1,13-20}. In relation to milk, an overview conducted in 2010 concluded that milk drinking is not harmful and may be associated with a small but worthwhile reduction in risk of coronary heart disease (8%) and a more substantial reduction in stroke risk (21%) for those who drank the most milk compared with those who drank the least¹³. The pooled results of seventeen studies in 2011 also found milk intake was associated with a small potential reduction in overall cardiovascular risk of 6% for each 200ml of milk consumed a day¹⁴. This analysis found no association between high intakes of either regular-fat or low-fat dairy products and increased risk of death from cardiovascular disease. Similarly, systematic reviews in 2015 and 2017 examining milk consumption and cardiovascular disease mortality observed no consistent association^{15,16}. This was also the conclusion for milk and CVD risk in a meta-analysis published in 2016; milk intake was found to be neutral with respect to risk of stroke and coronary artery disease¹⁷.

Meta-analyses for dairy products Meta-analyses also support neutral or beneficial effects of other dairy foods on cardiovascular

disease . Twenty two prospective cohort studies were included in an analysis published in 2015 which examined stroke and CHD incidence in relation to intake of individual dairy foods, and to low- and regular-fat dairy¹⁸. Cheese consumption was associated with a 16% decreased heart disease risk, and both cheese and low-fat dairy foods were associated with reduced risk of stroke (9% and 7% respectively). An earlier meta-analysis in 2014 looking specifically at stroke also reported similar reductions in risk with low-fat dairy (9%) and cheese intake (6%) and, in addition, with total dairy (12%) and fermented milk (20%)¹⁹. Similarly, in another meta-analysis including 18 studies which had examined dairy intake and stroke risk, milk and cheese consumption were associated with reduced risk of stroke; risk reductions were maximal around 125g/ day for milk (16%) and from 25 g/day upwards for cheese (9%)²⁰. Cheese was also associated with a lower risk of stroke (13%) in a meta-analysis published in 2016, as was total dairy intake (9%)²¹. In addition, cheese intake was associated with an 18% reduced risk of coronary heart disease. A beneficial effect of cheese was also supported by a meta-analysis of prospective cohort studies published in 2017 in which cheese intake was associated with 10%, 14% and 10% reduced risks of total CVD, CHD and stroke respectively²². A recent systematic review of the association between dairy product consumption and risk of various cardiovascular-related clinical outcomes also reports favourable associations between intakes of total dairy, low-fat dairy, cheese, and fermented dairy and the risk of stroke¹⁷. Similarly, a dose-response meta-analysis in 2017 combining data from 29 prospective cohort studies demonstrated neutral associations between dairy products and cardiovascular mortality¹⁶.

Potential dairy matrix mechanisms The explanation for the finding that dairy foods, even those containing fat and saturated fat such as cheese, have a neutral or even a beneficial effect on CVD is likely to lie in the complex composition of the dairy matrix ²³.

Although some dairy foods contain saturated fatty acids, they are also rich in nutrients and bioactive components. such as calcium, potassium, phosphorus and **bioactive peptides** that may modify CVD risk through, for example, positive effects on blood pressure, weight and diabetes. In addition, dairy constituents such as bioactive peptides may have direct effects on cardiovascular parameters including blood clotting, arterial stiffness endothelial function and inflammation²⁴. This may help counter any negative effects of saturated fat in dairy on blood lipids and CVD risk. However, it is also increasingly recognised that individual saturated fatty acids have different effects on blood lipids: several of those in milk fat do not have an adverse effect on LDL ('bad') cholesterol or other markers of CVD risk including HDL ('good') cholesterol and the ratio of total to HDL cholesterol²⁵ Moreover components of the dairy matrix have been shown to modify blood lipid levels²³.

There is evidence that **calcium** in dairy foods, through its effects on binding fat and decreasing its absorption in the gut, may reduce the potential rise in LDL cholesterol following saturated fat consumption²⁶⁻²⁸. For example, cheese does not increase LDL cholesterol compared with butter of equal fat content²⁷. Similarly, compared with a low-calcium control diet, milk- and cheese-based diets lessened saturated fatty acid-induced increases in total and LDL cholesterol²⁹ It may be important for this beneficial effect that fat and calcium are embedded in the same food matrix, as is the case for milk and cheese²³. **Phosphorus** in the dairy matrix may also interact with calcium to influence blood lipids; calcium phosphate binds bile acids and fatty acids, and increases their excretion³⁰. It has been suggested too that the membrane which encloses milk fat (the **milk fat globule membrane** ; MFGM) and which is rich in bioactive phospholipids and proteins may have a beneficial role in modulating blood lipids³¹. Fermented dairy foods may also modify blood lipids through favouring gut bacteria which produce short-chain fatty acids (SCFA), and which in turn have a positive effect on lipids³².

In addition, the total fatty acid profile of a food, not just its saturated fatty acid content, is important.

Milk fat includes a number of fatty acids which may have beneficial effects on CVD risk factors such as blood lipids and markers of inflammation. These include conjugated linoleic acid (cis-9, trans-11 CLA) and trans palmitoleic acid (trans-C16:1)³³⁻³⁵. A recent study reported that higher levels of a biomarker of dairy fat in the diet were associated with a lower incidence of CVD and CVD risk factors³⁶.

It is evident that in terms of the effects of milk and dairy foods on cardiovascular health, the whole food, and the dietary pattern, rather than an individual component such as saturated fat should be taken into account. In this respect, the weight of epidemiological evidence suggests no adverse effects of regularly consuming milk and dairy foods on cardiovascular health and rather, in some studies, a cardio-protective effect has been observed.