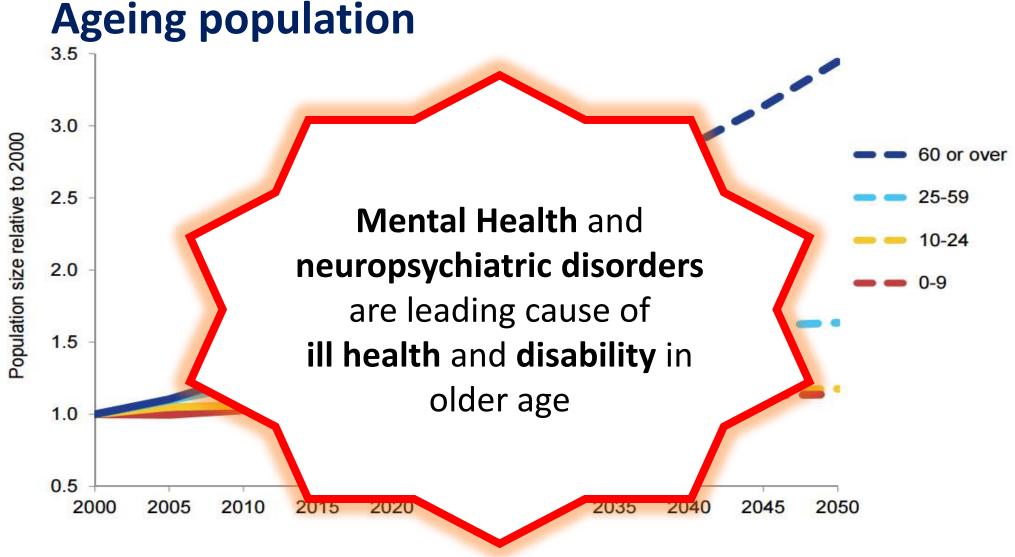


B-vitamins: mental health and the ageing brain Evidence from the TUDA study


Catherine Hughes, PhD INDI Symposium Dublin, 21st Sept 2023

Overview of Presentation

- Mental Health in Ageing
- Nutrition and the Ageing Brain
- Future Directions for Research in Mental Health and Ageing

Data source: United Nations (2015). World Population Prospects: The 2015 Revision.

Project 2 billion aged 60 years and over by 2050

Prince et al (2015) The Lancet 385: 549–62

Mental Health Disorders in Ageing

Dementia¹⁻²

- >944,000 older people living with dementia in UK; 55,000 in Ireland
- Costed an estimated £25 billion in 2021
- Expected to triple by 2050

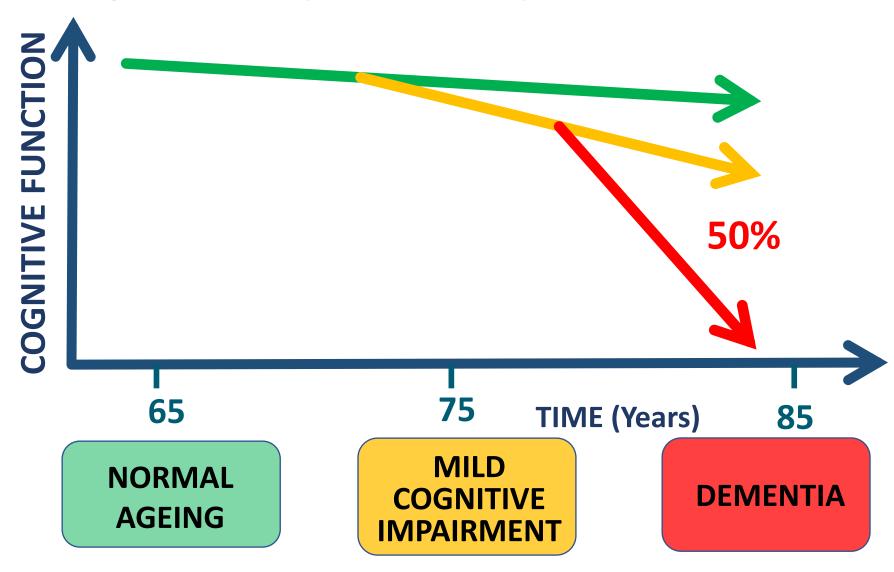
Anxiety³

Affects 14-20% of 70 to 80 year olds

Depression⁴⁻⁵

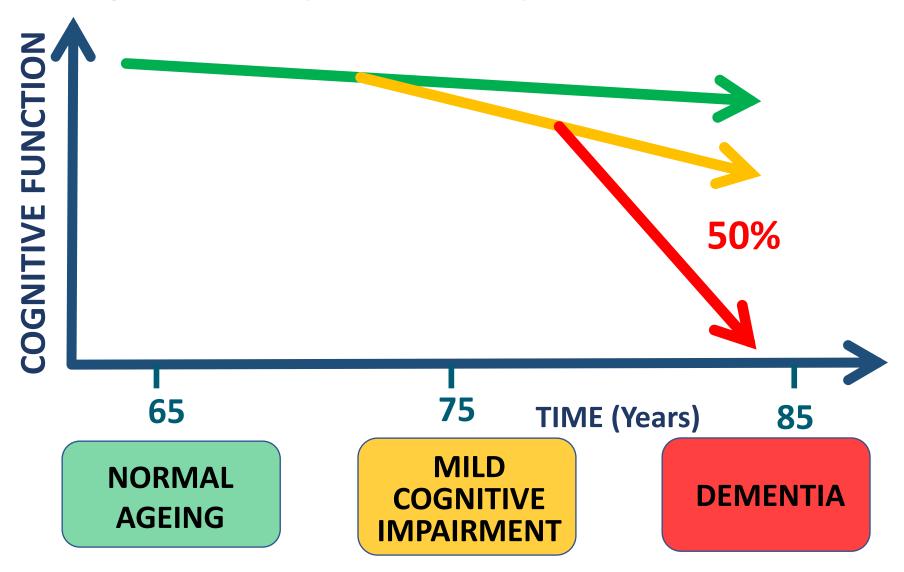
- 2nd leading cause of disability
- £7.5 billion/ €3 billion
- 50% more common among women than men

Mental Health Disorders in Ageing



¹Wittenburg *et al* (2019) Care Policy and Evaluation Centre. *London School of Economics*²Alzheimer's Research UK (2021)

³Beaumont and Loft; *Office for National Statistics*⁴ The British Psychological Society; NICE National Clinical Practice Guideline 90. (2010)


⁵WHO (2023)

Cognitive Impairment Spectrum

Gauthier et al (2006) The Lancet 367: 1262–70

Cognitive Impairment Spectrum

Alzheimer's Disease 50-70%

Vascular Dementia
Up to 20%

Dementia with Lewy Bodies 10-15%

Frontal Lobe
Dementia
2%

Other Dementia's

Gauthier et al (2006) The Lancet 367: 1262–70

Age and Life Expectancy

Advancing age is the biggest risk factor for the development of Dementia

1 in 20 > Age 65

1 in 10 > Age 75

1 in 5 > Age 85

Differences in risk between men and women may be partially explained due to women's longer life expectancy

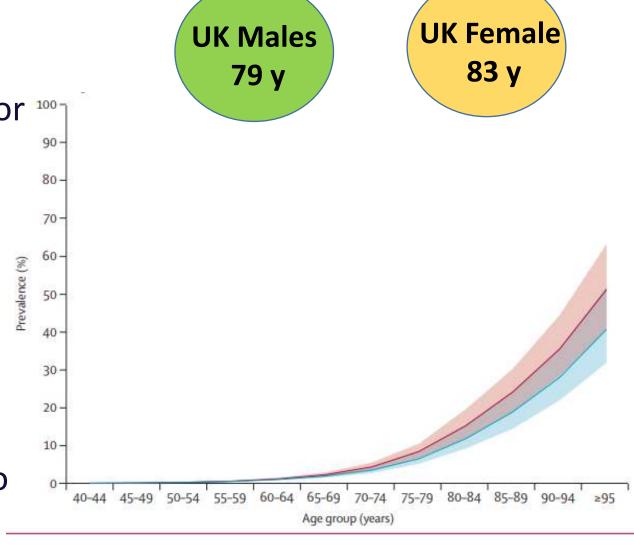


Figure: Global Prevalence of Dementia with age

Genetics:

Apoliprotein E (ApoE) – THE major genetic risk factor for Alzheimer's Disease

ApoE gene codes for a cholesterol-carrying protein that supports lipid transport and injury repair in the brain

ApoE comes in several different alleles^{12, 1}

- *ApoE* ε2 is relatively rare
- ApoE ε3 is the most common allele
- ApoE ε4 increases the risk of Alzheimer's disease
 - heterozygotes X3 higher risk of Alzheimer's disease
 - homozygotes X15 higher risk of Alzheimer's disease

Early life Percentage reduction in dementia prevalence if this risk factor is eliminated Less education Newly-identified risk factors Hearing loss 8% Traumatic brain injury Midlife Hypertension Alcohol >21 units per week Obesity Smoking Depression Social isolation Later life Physical inactivity Air pollution Diabetes Potentially modifiable Risk unknown 60%

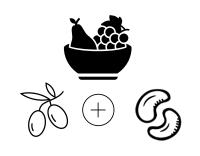
Modifiable Dementia Risk Factors

Novel life-course model of risk identifying 12 modifiable factors that could prevent 40% of all cases of dementia

Overview of Presentation

- Mental Health in Ageing
- Nutrition and the Ageing Brain
- Future Directions for Research in Mental Health and Ageing

The Mediterranean Diet



RCT Evidence: PREDIMED- NAVARRA

(Martínez-Lapiscina et al., 2013).

Mediterranean diet

• (个 fruit, vegetables, wholegrains, olive oil and fish)

MMSE and Clock Drawing Test (CDT)

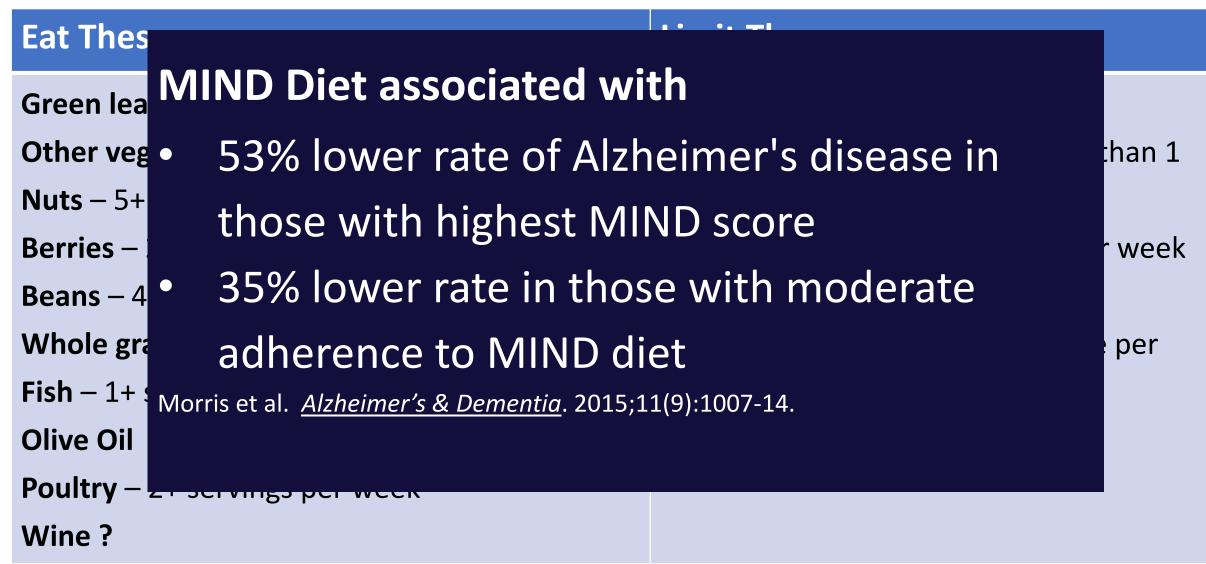
Observational evidence

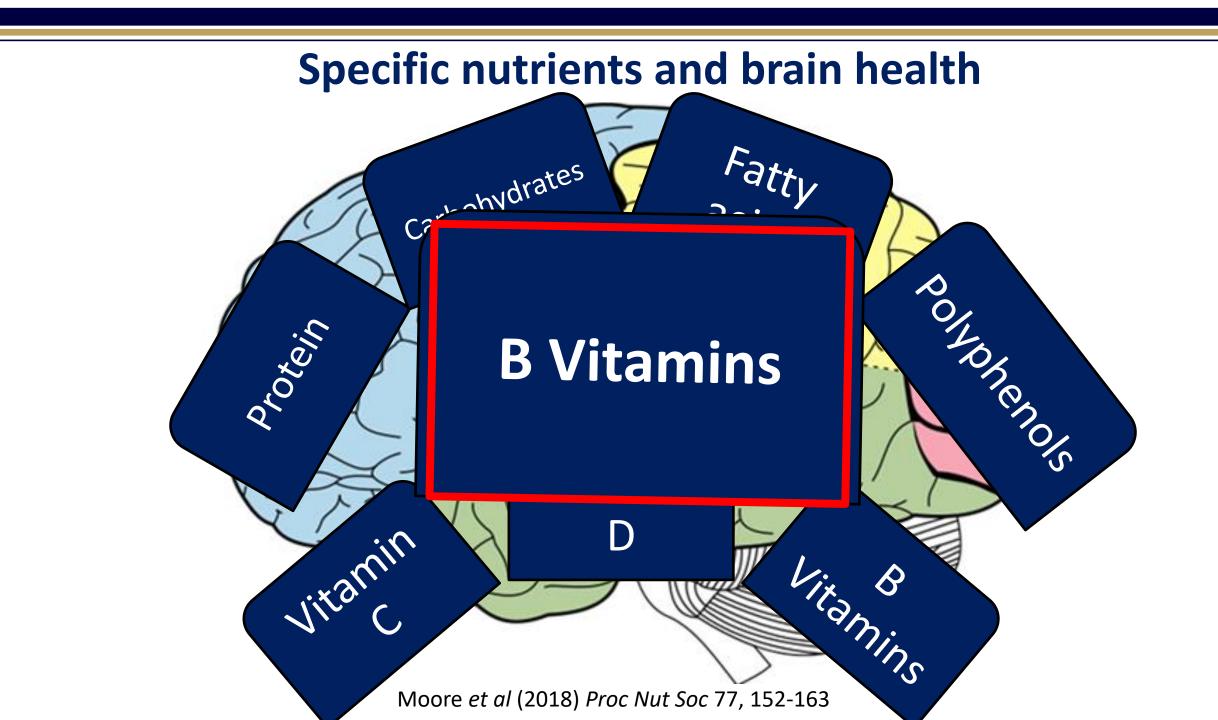
- Protects cognition function^{1, 2}
- Protective against depressive symptoms³

Findings:

Intervention with MedDiet +extra virgin olive oil and nuts had better cognitive scores

- 1. Shannon BMC Med. 2023 Mar 14;21(1):81; 2. Loughrey DG et al. Adv Nutr. 2017;8(4):571-586:
- 2. 3 Moore et al. Proceedings of Nutrition Society 2018


The MIND Diet Reduces the risk of developing dementia

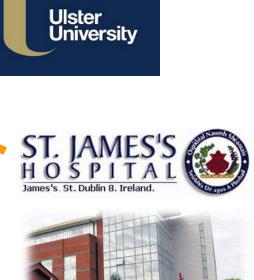

MIND-Mediterranean-DASH Intervention for Neurogenerative delay

Eat These	Limit These
Green leafy vegetables – 1 serving a day	Red Meat
Other vegetables – 1+ servings a day	Butter and stick margarine – less than 1
Nuts – 5+ servings per week	tablespoon per day
Berries – 2+ servings per week	Cheese – less than one serving per week
Beans – 4+ servings per week	Pastries and sweets
Whole grains – 3+ servings a day	Fried or Fast food – less than once per
Fish – 1+ serving per week	week
Olive Oil	
Poultry – 2+ servings per week	
Wine?	

The MIND Diet Reduces the risk of developing dementia

MIND-Mediterranean-DASH Intervention for Neurogenerative delay

The Trinity-Ulster-Department of Agriculture (TUDA) Study



5,186 adults 60 + years

St. James's Hospital

Anthropometric details

Demographic details and measures of deprivation

Medications, supplements, fortified foods

Lifestyle variables sun exposure

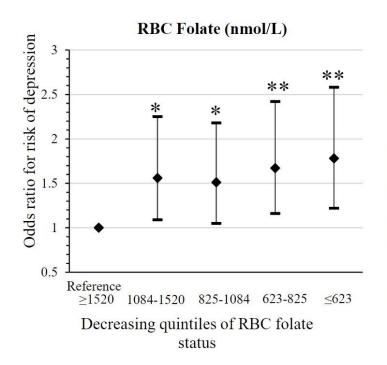
Smoking, alcohol, dietary habits,

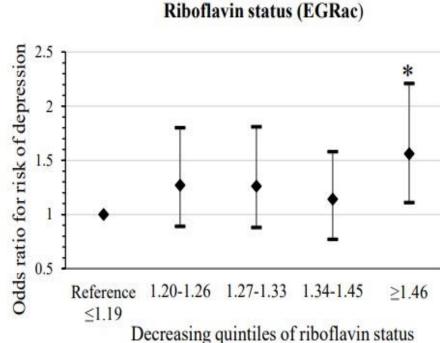
The TUDA Study

Genetic: SNP & WGS

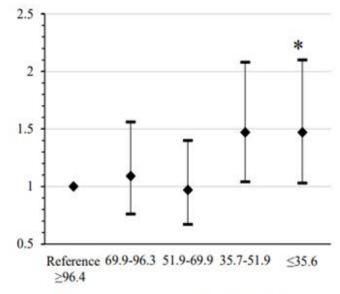
Neuropsychiatric Test MMSE, FAB, RBANS HADS, Depression.

DXA Bone scans, bone and inflammatory biomarkers

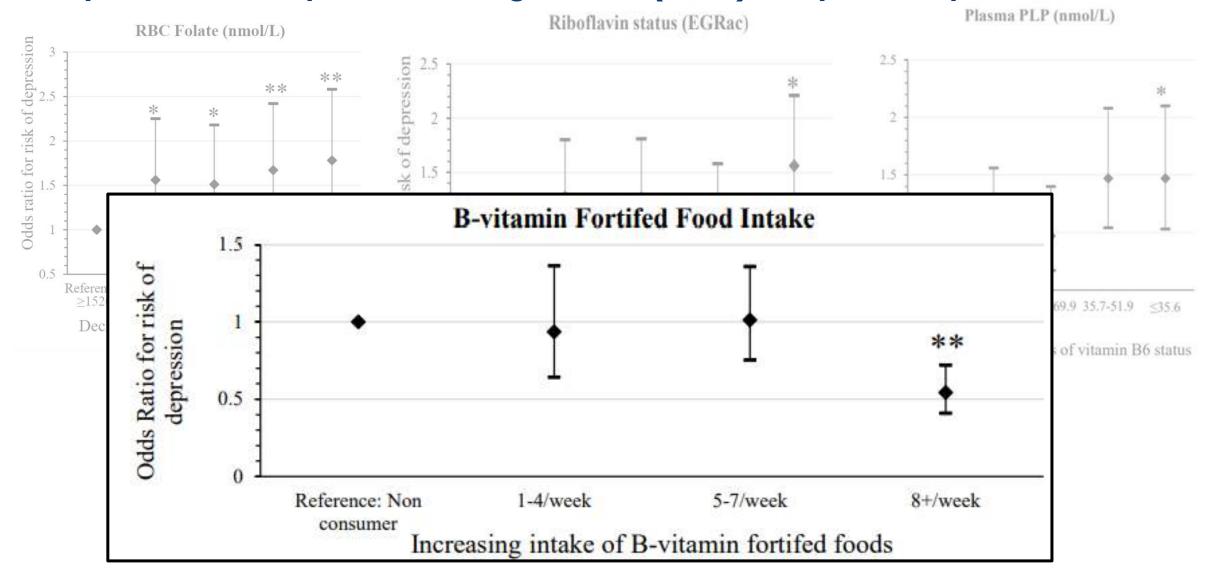

Biomarkers of folate, vitamin B12, B6, B2, vitamin D status


Measures of frailty Physical self maintenance, daily living activities, mobility

Medical history, Heart disease, stroke, diabetes, hypertension, falls, anxiety, depression


Clinical parameters BP, liver function, kidney function, haematology, lipids, electrolytes

Trinity-Ulster and Department of Agriculture (TUDA) study and depression



Vitamin B6 nmol/L (plasma PLP)

Decreasing quintiles of vitamin B6 status

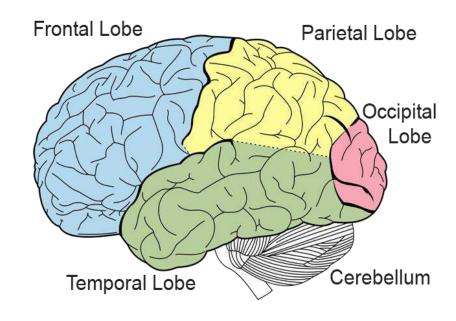
Trinity-Ulster and Department of Agriculture (TUDA) study and depression

TUDA: Results in relation to depression

- > Lower status of folate, B6 and riboflavin each increased risk of depression
- ➤ Consuming more than 1 portion/day fortified foods can contribute to a reduced risk of depression.

TUDA: Results in relation to depression

- > Lower status of folate, B6 and riboflavin each increased risk of depression
- ➤ Consuming more than 1 portion/day fortified foods can contribute to a reduced risk of depression.


Meta-analysis of RCTs showing that B-vitamin supplementation has beneficial effect reducing the risk of depression

	Experimental			Control			Std. mean difference		Std. mean difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
✓ Ghaleiha	-20.88	2.62	25	-20.13	2.77	26	26.1%	-0.27 [-0.83 , 0.28]	•	
√ Godfrey	-1.31	1.31	13	3.27	1.4	11	23.5%	-3.27 [-4.56 , -1.98]		
✓ Hallert	-4.47	9.38	11	0.27	7.59	12	25.3%	-0.54 [-1.37, 0.30]	-	
✓ Stough	-2.56	0.98	42	1.83	1.51	18	25.1%	-3.73 [-4.62 , -2.85]	-	
Total (95% CI)			91			67	100.0%	-1.91 [-3.69 , -0.13]		
Heterogeneity: Tau ² =	3.08; Chi ² :	= 54.48, 0	lf = 3 (P <	(0.00001)	; I ² = 94%				•	
Test for overall effect:	Z = 2.11 (P	= 0.04)						_	10 -5 0 5	10
Test for subgroup diffe	erences: No	t applicat	ole						[experimental] Favours [col	

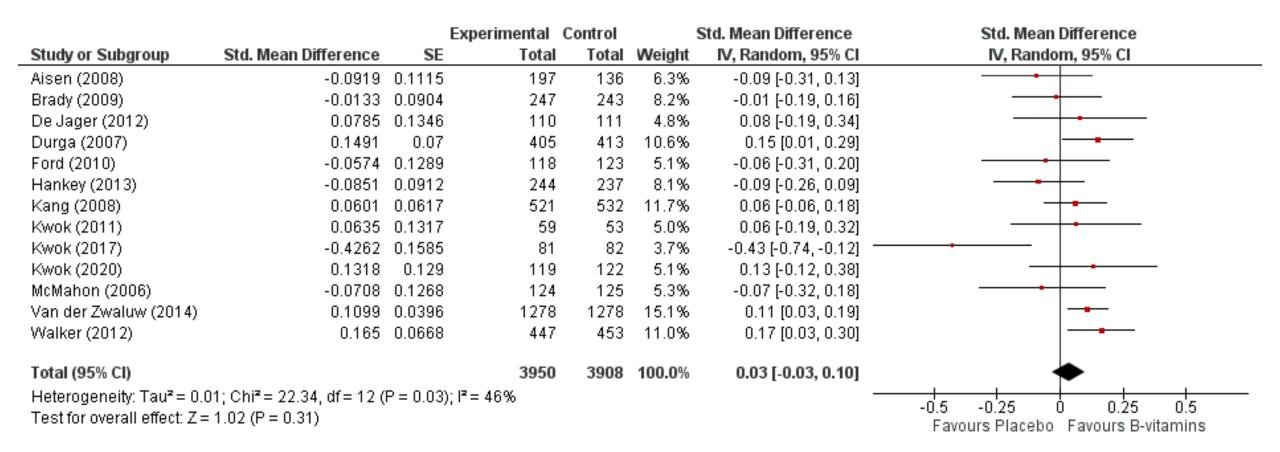
Neuropsychiatric Assessment

Cognition: Repeatable Battery for Neuropsychological Assessment (RBANS)

- Screening battery for global cognitive assessment
- Total RBANS score <80 generally indicative of cognitive impairment
- 5 component domains of cognition
 - Immediate Memory
 - Visuospatial /Constructional abilities
 - Language
 - Attention
 - Delayed memory

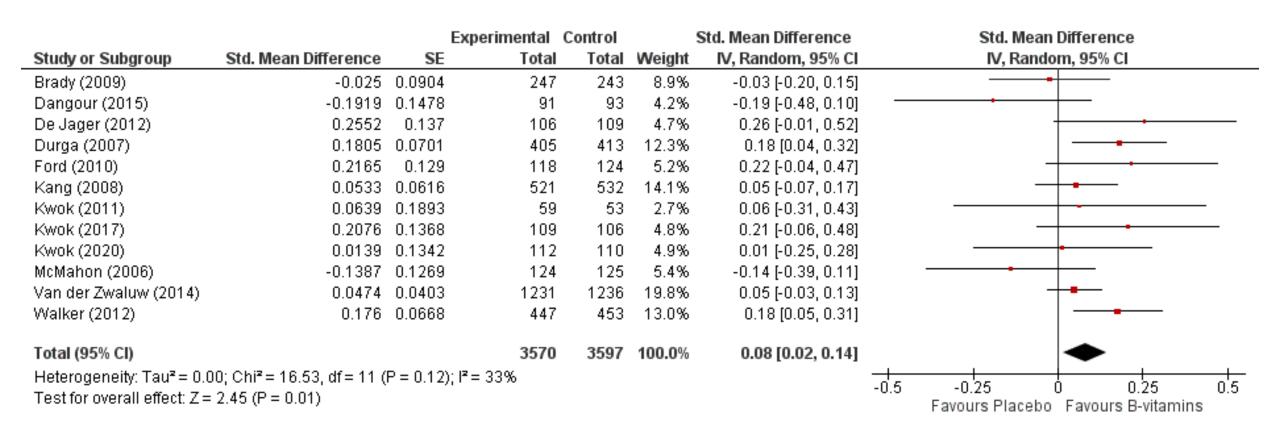
Depression: Centre for Epidemiologic Studies Depression Scale (CED-S)

Anxiety: Hospital Anxiety and Depression Scale (HADS)


TUDA follow-up cohort:

Risk of cognitive decline in relation to B-vitamin biomarkers at baseline

Age (years)	72.4 (5.0)			
Sex n (% Male)	274 (47)			
Age finished education	16.5 (3.0)			
B-vitamin Status	Odds Ratio	95% CI	P-value	
Elevated homocysteine (≥13.0 μmol/L)	1.00	(0.67-1.51)	0.969	
Low RBC folate (185-865 nmol/L)	1.21	(0.80-1.83)	0.367	
Low serum vitamin B12 (58-251 pmol/L)	0.83	(0.56-1.25)	0.376	
Low B6 (PLP 11.6-61.3 nmol/L)	1.75	(1.16-2.65)	0.008	
Low riboflavin status (EGRAC)	1.63	(1.09-2.45)	0.018	


Accelerated cognitive decline: rate of decline in the highest quartile for RBANS ≥7
Binary logistic regression with adjustment for age, education, gender, depression and baseline cognitive score.

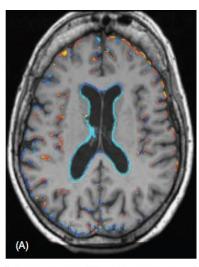
RCTs of B-Vitamins: Global Cognition

- There was no effect of B-vitamins on global cognition
- No effect on executive function or processing speed (data not shown)
 Gordon et al. In preparation

RCTs of B-Vitamins: Memory

B-vitamin supplementation had a beneficial effect on memory

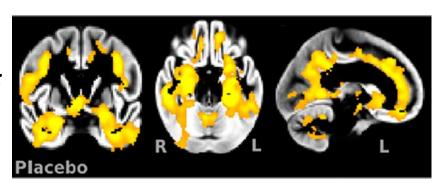
Gordon et al. In preparation

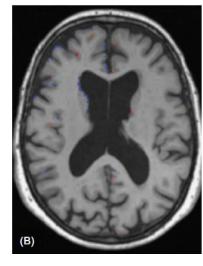

The VITACOG Trial: Intervention with B-vitamins for 2 years

Cognitive Outcomes

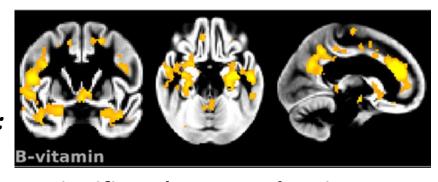
 B-vitamin treatment stabilized executive function (CLOX)

- In participants with baseline homocysteine ≥11.3µmol/L, B vitamin treatment benefited
 - Global cognition
 - Episodic memory
 - Semantic memory


Neuroimaging Outcomes



A: Placebo


Rate of Atrophy:

2.5% per year

B: B Vitamins
Rate of Atrophy:
0.46% per year

Significantly greater loss in Grey Matter Volume in the placebo group Douaud et al. (2013) Proc of Natl Acad Sci USA 110(23):9523-9528

Smith et al. (2010) Plos One 5(9):e1224

The BrainHOP trial

Aim

To investigate the effect of a 2 year B-vitamin intervention (folic acid $400\mu g/d$; vitamins B12 $10\mu g/d$; B6 10mg/d and B2 10mg/d) on cognitive function in older adults.

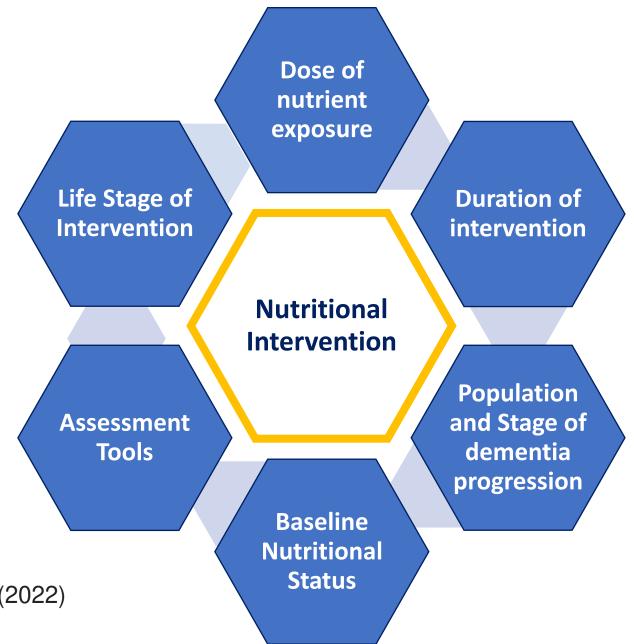
Hypothesis

B-vitamins will help to maintain better cognitive function in older adults over a 2-year period.

Design: 2 year randomised controlled trial

BrainHOP-Intervention Results

Specific Cognitive Domains


Cognitive Function	Placebo n 125	B-vitamin n 124	P-value
	Change	Change	
RBANS Global Score	2.5 (0.9)	4.2 (1.0)	0.194
RBANS Specific Domains			
Immediate Memory	2.3 (1.2)	1.7 (1.2)	0.739
Visuospatial	-2.7 (1.4)	3.7 (1.4)	0.002
Language	8.6 (0.9)	7.7(0.9)	0.515
Attention	-0.7 (1.2)	-0.1 (1.2)	0.710
Delayed Memory	1.7 (1.2)	2.2 (1.2)	0.818

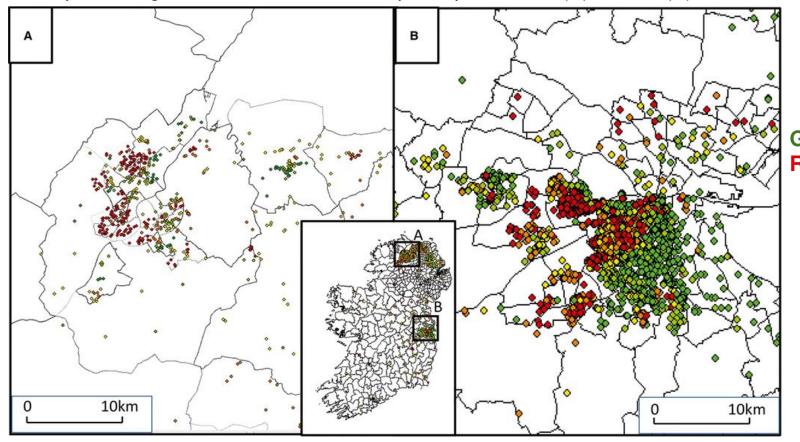
Overview of Presentation


- Mental Health in Ageing
- Nutrition and the Ageing Brain
- Future Directions for Research in Mental Health and Ageing

Key Challenges in Nutrition Intervention Trials

Nutrition for Dementia Prevention Working Group (2022) Lancet Healthy Longev, 3(7), e501-e512.

Future Directions for Mental Health Research

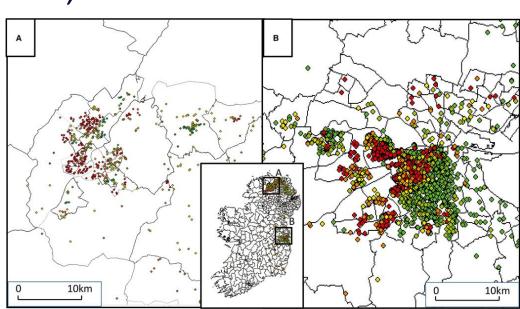


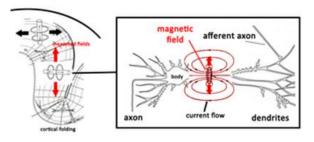
Journal of the American Geriatrics Society

Effect of Area-Level Socioeconomic Deprivation on Risk of Cognitive Dysfunction in Older Adults

Adrian McCann, PhD,* Helene McNulty, PhD,* Jan Rigby, PhD,† Catherine F. Hughes, PhD,* Leane Hoey, PhD,* Anne M. Molloy, PhD,‡ Conal J. Cunningham, MD,§ Miriam C. Casey, MD,§ Fergal Tracey, MD,¶ Maurice J. O'Kane, MD,* Kevin McCarroll, MD,§ Mary Ward, PhD,* Katie Moore, BSc,* J.J. Strain, PhD,* and Adrian Moore, PhD†† Map showing the distribution of TUDA participants from (A) NI and (B) Rol

GREEN - Least-deprived 20%; RED - Most-deprived 20%


Journal of the American Geriatrics Society


Lessons learnt to date from the TUDA study

We found that older adults (n=5186) living in the most deprived (vs least) areas of NI and ROI had

- less formal education;
- higher rates of smoking and alcohol consumption;
- higher rates of obesity;
- higher blood pressure;
- higher risk of diabetes;
- 40% higher risk of cognitive dysfunction

Magnetoencephalography (MEG)

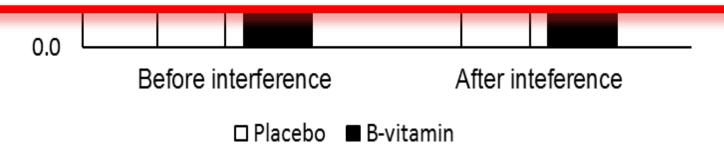
Vectorial Particular Control of the Control of the

Maps brain activity by measuring the magnetic fields produced by neuronal activity with submillisecond precision.

Working Memory Paradigm¹

¹Fernando Maestú and Noelia Serrano Martínez Laboratory of Cognitive and Computational Neuroscience (LNCyC), University of Madrid, Spain.

BrainHOP Trial Results: Accuracy in working memory task in response to B-vitamins


	% A c	P*	
	Placebo	Treatment	
No interference	87.7 (13.9)	91.2 (12.0)	0.346
Interference	76.7 (20.9)	92.4 (7.3)	0.041

Data presented as means (SD) *Data analysed using Mann-Whitney Test.

Delta band power, before and after interference in a working memory task

Delta (1-4 Hz)

Preliminary results suggest that better B-vitamin status is associated with improved neuronal functioning

Application of AI to the TUDA Study Dataset Dementia Data Analytics Project:

Identifying Key Predictors of Cognitive Dysfunction in Older People Using Supervised Machine Learning Techniques: Observational Study

Debbie Rankin, BSc, PhD, Michaela Black, BSc, PhD, [...], and Helene McNulty, BSc, PhD

Additional article information

Associated Data

Supplementary Materials

Aim: To identify key predictors of poorer cognitive performance in older people using machine learning techniques

Results: Frailty, age finished education, and memory concerns, plasma homocysteine, plasma PLP and HbA1c were identified as important determinants of cognitive dysfunction

Conclusions

These predictors could be used as a screening tool to identify patients that need further assessment and improve the efficiency of dementia screening

B-vitamins and Mental Health – Results Summary

- Cognitive Health Outcomes Results from the TUDA Study
- Low status of vitamin B6 and riboflavin were each associated with and an accelerated rate of cognitive decline
- Combined B-vitamin supplementation at low doses for 2 years resulted in improved visuospatial cognitive function
- Objective evidence from MEG analysis suggests that better B-vitamin status results in improved neuronal functioning
- Mental Health Outcomes Results from the TUDA Study
 - Lower status of folate, B6 and riboflavin each increased risk of depression
 - Consuming more than 1 portion/day fortified foods can contribute to a reduced risk of depression.

B-vitamins and Mental Health – Results Summary

- Cognitive Health Outcomes Results from the TUDA Study
- Low status of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with and an acceptance of vitamin B6 and riboflavin were each associated with an acceptance of vitamin B6 and riboflavin were each associated with an acceptance of vitamin were each associated with a company of vitamin between the vitamin acceptance of vitamin acceptance of vitamin were each associated with a company of vitamin acceptance of vitamin ac
- Cor Optimising nutritional status in older populations may have important impacts on brain health. This in turn would help to
- Objection
 resident of life in ageing.

- Mental Health Outcomes Results from the TUDA Study
 - Lower status of folate, B6 and riboflavin each increased risk of depression
 - Consuming more than 1 portion/day fortified foods can contribute to a reduced risk of depression.

Take Home Messages

- Concerns about the rising rates of dementia are real, but not inevitable
- Focusing on modifiable risk factors, particularly in middle age,
 will play an important role in prevention of dementia in later life
- Nutrition can play a key role albeit one that is often overlooked
- Future research in this area needs Interdisciplinary research approaches and application of state-of-art technologies

My thanks to...co-investigators, collaborators, funders and research volunteers

NICHE

Our Collaborators in TCD and St James Hospital

Prof Helene McNulty

Prof Mary Ward

Prof Sean Strain

Dr Leane Hoey

Dr Michelle Clements

Prof Kristina Pentieva

Dr Geraldine Horigan

Dr Adrian McCann

PhD students

Shane Gordon

Ryan Barlow

Dr Katie Moore

Dr Michelle Clarke

Dr Catherine McGarel

Dr Martina Rooney

Dr Emma Hughes

Prof John Scott

Prof Anne Molloy

Dr Eamon Laird

Dr Conal Cunningham

Dr Miriam Casey

All the TUDA **PARTICIPANTS**

Lynsey Montgomery

Umair Shabbir

Dr Kirsty Porter

Dr Harry Jarret

Dr Rosie Reilly

Clinical Collaborators

Fergal Tracey Maurice O'Kane Local GP's

Department of Agriculture. Food and the Marine

Talmhaíochta, Bia agus Mara

Environmental Sciences at Ulster

Prof Adrian Moore

Computing and Engineering

Prof Michaela Black

Prof Jonathan Wallace

Dr Debbie Rankin

Dr Paul Carlin

Department for

Employment and Learning

www.delni.gov.uk

RESEARCH

